BUTTERFLY VALVES-HIGH PERFORMANCE & LINED

QUALITY VALVE MANUFACTURER

QUALITY COMMITMENT

Quality is Our First Priority.

Consistent product quality and a proven track record makes Australian Pipeline Valve a dependable choice for cast Gate, Globe and Check Valves, where total reliability is the number one concern.

Since its founding, APV's philosophy has been focused on quality. Our valves are manufactured in full compliance to worldwide standards (such as ASME, ANSI, API 6D, API 600, EN, ISO, BS, AS).

70-78 Stanbel Road Salisbury Plain South Australia 5109 Telephone +61 (0)8 8285 0033 Fax +61 (0)8 8285 0044 email: admin@australianpipelinevalve.com.au

www.australianpipelinevalve.com.au

CONTENTS - SHORT VERSION*

High Performance Double Offset	4~9
High Performance Triple Offset	10~19*
Figure Number System - Double Offset and Triple Offset Butterfly Valves	20
Lined 2014/2016 Series	21~25*
Lined 2014/2016 HP Series	26~30*
Lined 2014/2016 HP2 Series	31*
Lined 2014 2P Series	32~36*
PTFE/FEP/PFA/ETFE Lined Butterfly Valve Model 2014-2P-D0	37~38*
Large Diameter Flanged Butterfly Valve HU-B60 Series	39~41*
Large Diameter Flanged Butterfly Valve HU-B70 Series	42~46*
Screwed Ends Butterfly Valve 14 Bar	47*

* This version excludes some of these pages, refer to full version at website.

© Copyright Australian Pipeline Valve 1990 - 2019 Edition

Catalogues, photos, brochures and technical publications are the exclusive property of Australian Pipeline Valve. Any unauthorised reproduction in total or in part, shall result in prosecution. Products and data sheets in this publication are subject to change at anytime without notice. Australian Pipeline Valve reserves the right to carry out amendments to products and materials.

SUPERSEAL - Butterfly Valves

DOUBLE OFFSET BUTTERFLY VALVES MODEL SLHBF, SLHBFFS 150 TO 1500 CLASS DOUBLE OFFSET

RANGE & STANDARDS

	CXCLE
Size	50NB - 1800NB (2" to 72")
Class	150 to 1500 ANSI
General Design	API 609 (Cat B) & ASME B16.34
Design Standards	Flanged: MSS-SP-67 Wafer: MSS-SP-68/ API 609-B Wall Thickness: API 609
Construction	Wafer, lugged, flanged
Pressure/ Temp.	ASME B16.34 & API 609-B/ ISO 5752
Face to Face	ASME B16.10 short/ MSS-SP-67/ MSS-SP-68/ API 609-B/ ISO 5752 short
Flange Dimensions	ASME B16.5, over 600NB (24'') - MSS-SP-44 OR API 605 or ASME B16.47, AS 4331.1, ISO 7005-1, E1092-1 PN10 ~ 250 also available
Pressure Test	API 598, ISO 5208, EN 1266, MSS-SP67
Leakage Rates	FCI 70-2 Class VI up to zero leakage API 598/ ISO 5208
Temperature Range	Resilient Seal (Soft) -46°C to 220°C (-50°F to 428°F) Metal Seal -46°C to 900°C (-50°F to 1652°F)

PRINCIPLES OF VALVE DESIGN

The standard SLHBF/SLHBFFS design is double offset (double eccentric). Available in firesafe & non firesafe in soft and metal seated. The soft seated version incorporates a metal seat retainer with an RPTFE insert for high pressure service and long life.

The basic concept of the SLHBF/SLHBFFS is to only utilise a thin slice of a ball valve at the seat ring area. The body is only wide enough to hold the disc, shaft & seat in place, all the remaining material is eliminated because it serves no purpose. Ball valves have 2 seats, but floating balls only seal on the upstream seat hence the sealing effectiveness of a HP Butterfly Valve is the same. The disc seating edge is a segment of a sphere and creates a reliable, high pressure seal against an un-interrupted 360° seat sealing surface. The disc profile is very thin & allows maximum flow with a low pressure drop.

The most common use of the SLHBF/SLHBFFS is to shut-off flow inside a pipeline. Every component of the valve is designed to contribute to this goal. The disc, shaft, bearings, packing & disc pins all work together to ensure that the disc is accurately positioned when closed to allow the seat to energise to the disc & create a seal.

SUPERSEAL

API 607 6th & 7th Ed. ISO 10497-5 **Firesafe Certified**

API 622 2011 2nd Edition ISO 15848-2 **Fugitive Emission Certified**

DOUBLE OFFSET BUTTERFLY VALVES MODEL SLHBF, SLHBFFS 150 TO 1500 CLASS DOUBLE OFFSET

FEATURES - DOUBLE OFFSET

The SLHBF Range is based on a unique quarter-turn design. The double offset shaft and disc configuration together with the advanced high technology seat system provides a reliable rugged multi-purpose butterfly valve range.

At the point of the disc opening, the double offset disc provides a cam-like action, thus preventing excessive seat wear & ensuring a long maintenance free life.

- Seat removal is possible without disassembly of the shaft and disc.
- Body insert protects seat from abrasion and erosion.
- Graphoil or PTFE seal-ring & packing.
- 2 Piece stem for extra flow.

Actuator bracket according to ISO 5211, which allows replacement of the stem seals without removal of the actuator.

PTFE-Seat System - SLHBF/SLHBFFS

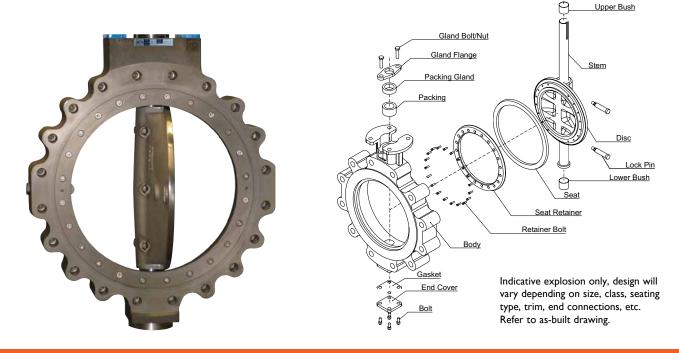
In the preferred flow-direction, the PTFE-Seat system provides optimum

performance. In this design, the line pressure acts as a positive force in the seat system even in fluctuating working conditions. The seat ring is retained by a metal seat retainer and is well protected by the valve-body, thus preventing seat distortion.

Bi-directional* - SLHBF/SLHBFFS

The primary PTFE-seat ring is backed up by a secondary metal ring. This metal seat provides a mechanical load to energize the PTFE-seat. The metal sealing ring secures and encapsulates the PTFE ring to ensure rigidity. In combination with the line pressure a Bi-directional* sealing against the line pressure is obtained.

* Bi-directional flow, however, bi-directional leak tight shut off must be specified with order.

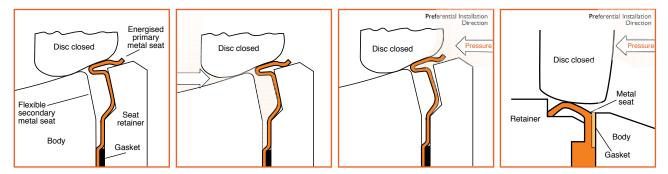

Fire Safe - SLHBFFS

The model SLHBFFS has a secondary metal seat which gives bi-directional sealing in the event of the PTFE seat insert being burned away in a fire.

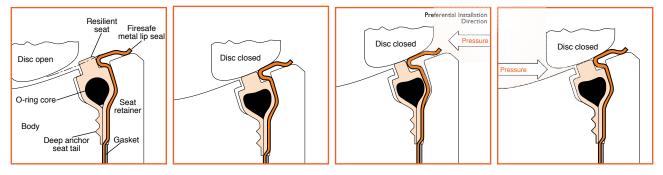
Metal to Metal Seat - SLHBF/SLHBFFS

High temperature service and Abrasive service. Bi-directional and inherently firesafe design.

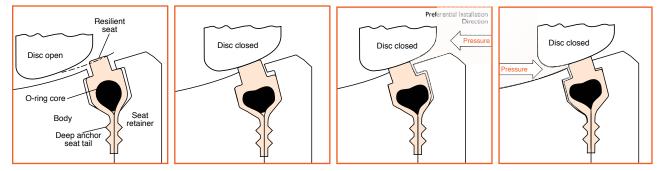
The primary metal seal enables this execution to be used up to 670°C. Seat-rings available are stainless steel ANSI 316L-chromium plated, (maximum allowed temperature: 310°C) and Inconel 625 (maximum allowed temperature: 760°C). As a result the Metal to Metal range meets the full pressure and temperature rating according to ANSI class ratings. Seat leakage can be specified to API 598 (ISO 5208 Leakage Class A), API 6D, FCI 70-2 Class VI etc.

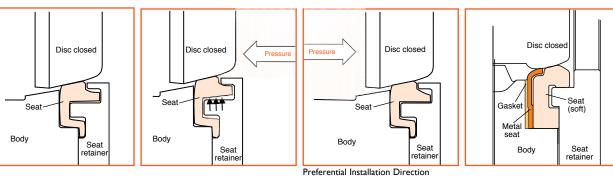


SEATING STYLES DOUBLE OFFSET


METAL TO METAL SEAT (FLEXIBLE FLO-SEAL STYLE)

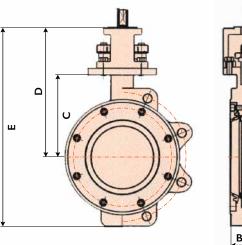
(SOLID ENERGISED STYLE)


(FIRESAFE ENERGISED LIP-SEAL STYLE)


FIRESAFE SOFT SEAT (ENERGISED FLO-SEAL STYLE)

SOFT SEAT (ENERGISED FLO-SEAL STYLE)

SOFT SEAT (ENERGISED LIP-SEAL STYLE)


Actual drawing supplied on request. Indicative drawings only.

SLHBFFS/SLHBF DOUBLE OFFSET WAFER & LUG DIMENSIONS

APPLICABLE STANDARDS

ISO 5211
ANSI B16.5
ANSI B16.34
MSS SP-68/ API 609
B16.34
API 609-B

DIMENSIONS (MM) 150LB & PN25

Size mm	80	100	150	200	250	300	350	400	450	500	600
Size inch	3"	4"	6"	8"	10"	12"	14"	16"	18"	20"	24"
А	48.0	54.0	57.0	63.5	71.5	81.0	92.0	101.5	114.5	127.0	154.0
В	27.3	30.6	33.9	40.5	41.8	48.0	56.5	63.0	71.5	79.0	90.5
с	113.0	132.0	162.0	192.0	262.0	298.0	320.0	365.0	388.0	418.0	498.0
D	183.4	202.5	245.3	289.0	364.0	401.5	420.0	482.0	510.0	535.0	679.0
E	256.4	309.6	375.8	470.4	585.2	660.6	710.6	800.6	876.5	930.4	1302.7
ISO 5211 MOUNTING PAD	F07	F07	F10	F10	F10	F14	F14	F14	F16	F16	F25

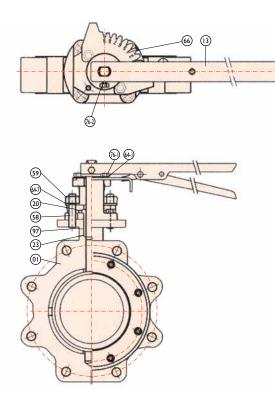
Dimensions indicative only, refer drawing.

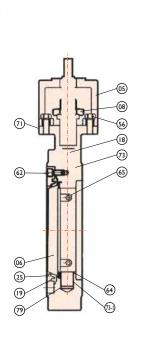
WEIGHT (KG)

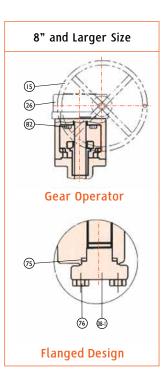
Lug	5.5	15.5	21	36	45	69	95	162	216	242	554
Wafer	9.5	11	16	27	30	45	68	120	168	195	433

DIMENSIONS (MM) 300LB

Size mm	80	100	150	200	250	300	350	400	450	500	600
Valve Size	3"	4"	6"	8"	10"	12"	14"	16"	18"	20"	24"
А	48.0	54.0	59.0	73.0	82.5	92.0	117.5	133.5	149.5	159.0	181.0
В	27.3	30.6	33.9	40.5	50.3	59.0	60.5	72.5	81.5	94.0	116.5
с	123.0	138.0	183.0	213.6	282.0	324.0	340.0	369.0	421.4	458.6	552.0
D	193.4	206.0	265.5	311.0	384.0	427.5	446.0	501.0	548.5	581.0	690.0
E	292.4	321.0	416.6	514.8	626.7	708.7	731.8	816.4	962.0	1053.5	1414.6
ISO 5211 MOUNTING PAD	F07	F07	F10	F10	F10	F14	F14	F14	F16	F16	F25

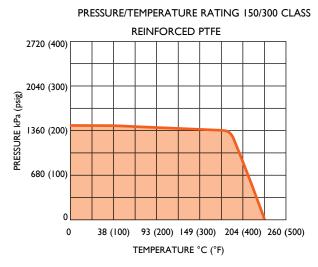

Dimensions indicative only, refer drawing. 600 to 2500 Class refer to drawing.

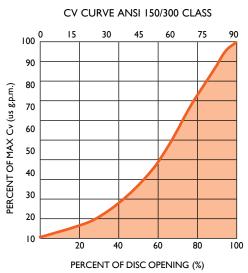

WEIGHT (KG)


Lug	15.5	24	36	54	79	117	253	329	504	649	986
Wafer	10	13	19	32	39	55	167	195	325	407	632

SLHBF/FS-150 / SLHBF/FS-300 DOUBLE OFFSET ASSEMBLY DRAWING

PARTS LIST


150LB & 300LB


No.	Description	Mate	erial	QTY.	No.	Description	Material	Qty.
01	Body	A351 CF8M	A216 WCB	1	62	Wrench Bolt	A193 B8M / B8	1 SET
05	Yoke	A351 CF8	A216 WCB	1	64	Disc Washer	A276 316 / 304	2
06	Disc	A351	CF8M	1	64-1	Lock Washer	Stainless Steel	2
08	Gland Flange	A351 CF8	A105	1	64-2	Spring Washer	Stainless Steel	2
08-1	Low Gland Flange	A351 CF8M	A216 WCB	1	65	Disc Pin	316 / 17-4 PH / 304	2
13	Lever	Carbor	n Steel	1	66	Stopper	Carbon Steel	1
15	Handwheel (Gear)	Carbor	n Steel	1	71	Name Plate	Stainless Steel	1
18	Stem	17-4 PH / 316 / 304		1	73	Stem Bearing	316 S/S Backed R.T.F.E.	1
19	Seat	R-PTFE / 31	6 / Stellite	1	73.1	Stem Bearing	316 S/S Backed R.T.F.E.	1
19a	Seat Metal Fire Seal	A276	5 316	1	75	O-Ring	PTFE / Graphite	1
20	Gland Ring	A276 31	6 / 304	1	76	Low Gland Bolt	A193 B8	1 SET
23	Spacer	A276 31	6 / 304	1	76-1	Setting Bolt	A193 B8	2
25	Seat Retainer	A351 CF8M	A105	1	76-2	Setting Bolt	A193 B8	1
26	Gear Box	Ductil	e Iron	1 SET	79	Disc Spring	Stainless S	1
56	Yoke Bolt	A193 B8		1 SET	82	Gear Bolt	A193 B8	1 SET
58	Gland Bolt	A193 B8		2	97	Packing	PTFE / GRP	1 SET
59	Gland Nut	A194 8		2				

Indicative example only, design varies according to size, class and specifications. Refer to as-built drawing.

SLHBF & SLHBFFS DOUBLE OFFSET **ENGINEERING DATA**

CV RATING ANSI 150 CLASS

Valve Size DN (NPS)	Cv
80 (3")	240
100 (4")	430
150 (6")	1150
200 (8")	2100
250 (10")	3200
300 (12")	47000
350 (14")	5160
400 (16")	6930
450 (18")	9330
500 (20")	11340
600 (24")	18540

150 CLASS BODY PRESSURE/TEMPERATURE RATING

Temperature °C	Carbon Steel	Stainless Steel 316	20# Alloy	Monel
-20 -38	19.7	19.0	15.8	15.8
93	17.9	16.5	13.8	13.8
149	15.8	14.8	12.4	13.1
204	13.8	13.4	11.0	12.8
260	11.7	11.7	10.3	11.7
Test Pressure	31	29.3	24.1	24.1

Refer Data Sheet Class \geq 300lb.

SLHBF - TORQUE RATING* 150/300 CLASS

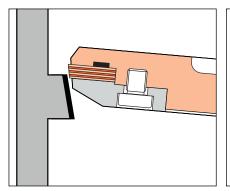
MAX. DIFFERENTIAL PRESSURE - kPa 5,515.8 0 689 5 1,378.9 2068.4 2757.9 3.447.4 4,136.8 4.826.3 7000 6000 5000 9490.7 8134.9 6779.0 5423.2 4000 4067.5 3000 2711.6 2000 1000 1355.8 800 700 600 1084.6 949.0 813.5 677.9 TORQUE REQUIRED - FT. LB. TORQUE REQUIRED - Nm. 500 400 542.3 406.7 300 200 271.1 100 135.5 80 70 60 108.4 94.9 81.3 50 67.7 40 54.2 30 40.6 20 27.1 100 200 300 500 600 700 800 0 400

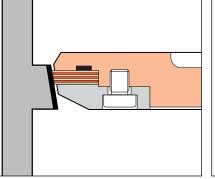
* SLHBFFS torque refer to data sheets.

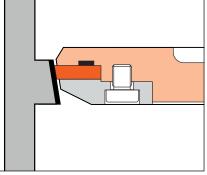
TRIPLE OFFSET BUTTERFLY VALVES MODEL SLHBFFS-T 150 TO 2500 CLASS TRIPLE OFFSET

RANGE & STANDARDS

RANGE & STANDA	RDS	CXCLF.		
Size	50NB - 1800NB (2" to 72")		우 옸	¥ &
Class	150 to 1500 ANSI			
Design Standards	API 609 Category B	ISO 15848-1	API 607 7th Ed. , ISO 10497-5	ISO 15848-1
Dimensions	& ASME B16.34 API 609-B/ ISO 5752/ MSS-SP-67/68	Endurance Test Certified	Firesafe Certified	Fugitive Emission Certified
Construction	Wafer, lugged, flanged short & long pattern	1		
Pressure/ Temp.	ASME B16.34 & API 609-B/ ISO 575	2	WF Q	
Face to Face	ASME B16.10 short & long/ API 609 API 6D/ ISO 5752 short	′ 🚺		ALL ALL
Flange Dimensions	ASME B16.5, over 600NB (24") - MSS-SP-44 or API 605 or ASME B16.47	Ň		000
Pressure Test	API 598, ISO 5208 Rate A, EN 1266 API 6D	,		
Leakage Rates	True zero leakage			


The SLHBFFS-T Range is based on a unique quarter-turn design.


The Triple offset shaft and disc configuration together with the advanced high technology seat system provides a reliable rugged multi-purpose butterfly valve range.


Laminated/Metal Seat

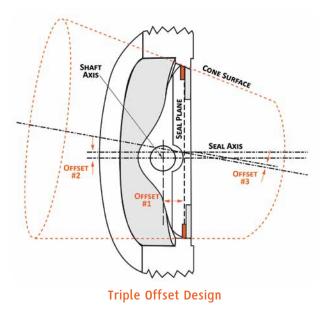
The triple laminated design seat with multiple stainless steel seat rings laminated with graphite inserts to provide zero leakage. The SLHBFFS-T is suitable for high temperature and abrasive service. The laminated and all-metal seat design facilitates bi-directional high temperature service and is inherently firesafe design. The primary metal seat enables the execution to be used up to 670°C.

Seat-rings available are stainless steel ANSI 316L-chromium plated or stellite, (maximum allowed temperature: 310°C) and Inconel 625 (maximum allowed temperature: 760°C). As a result the metal/laminated seat range meets the full pressure temperature rating according to ASME class ratings. Seat leakage can be specified to API 6D/API 598 (ISO 5208 Zero Leakage Class A), FCI 70-2 Class VI etc.

Disc slightly open

Disc closed: Multi layer seat ring

Disc closed: Pure metal seat ring


MODEL SLHBFFS-T 150 TO 2500 CLASS TRIPLE OFFSET

PRINCIPLES OF VALVE DESIGN - TRIPLE OFFSET

Superseal Model SLHBFFS-T 150 to 2500 Class triple offset metal seat butterfly valves provide a bi-directional and bubble-tight shut-off which is attributed to the geometry of the triple offset seat. Available in metal to metal and metal laminated graphite seat designs. Can also be used for flow control linear flow characteristics between 90 degrees and 70 degrees of opening.

The valve stem is offset from the seat area (1st offset) and the valve seat surface centre line is offset against the centre line of the pipe (2nd offset) and the conical axis is offset from the valve centre line (3rd offset: inclined cone). The 3rd offset completely eliminates rubbing or scraping. The seat surfaces of the body and seal ring in this triple offset design, contact with an inclined "cone-in-cone", and this design requires precision seating tolerances and durability to ensure a slight precision lapped wedge-mating effect. In addition, the angle of contact between the body and seat ring provides a low opening and closing torque due to almost no wedging and no scraping action on opening or closing (unlike trunnion mounted ball valves). This eccentric triple offset design provides excellent sealing performance and seat durability and it hardly ever needs repair under normal service conditions.

The seat design can be all metal to metal (optional resilient metal seat design) or multiple laminated using resilient metal alternated with one or even two of the following laminations depending on service: - graphite/aramid fibre/ ceramic fibre.

DESIGN FEATURES - TRIPLE OFFSET

Characteristics and Merits

- Excellent seat durability and low operating torque due to non-rubbing characteristics of triple offset construction.
- Bi-directional zero leakage service available (when specified).
- Unrestricted selection of face to face dimensions for API, ASME (ANSI), EN, ISO etc.
- & perfect interchangeability of gate, ball, plug, high performance butterfly, & other valves.
- Low emission design, quarter turn construction, low operating torque & lower cost.

Leakage Rates

Leakage rates range from FCI-70 Class IV, V or VI through to zero leakage. Valves can be specified to:--API 598 Zero Leakage -ISO 5208 Leakage Rate A -EN 1866 -API 6D

ISO 15848-2

Fugitive Emission Certified

MODEL SLHBFFS-T 150 TO 2500 CLASS TRIPLE OFFSET

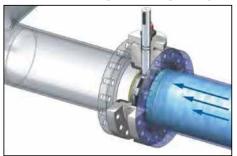
MATERIALS

- Body Carbon Steel / Stainless Steel / Ni-Al-Bronze / Hastelloy / Inconel / Titanium / Other
- Disc Carbon Steel / Stainless Steel / Ni-Al-Bronze / Hastelloy / Inconel / Titanium / Other
- Stem 410 SS, 17-4PH & XM-19 & Other Materials
- Seat 321 SS, 316 SS Hardened, 316 SS, Stellite 21 & Other Materials

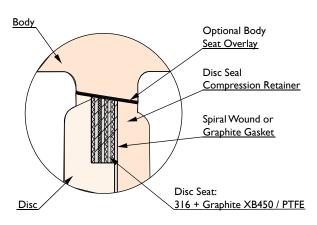
STANDARD MULTI-LAMINATED SEAT

The APV-Superseal triple offset butterfly valve design incorporates metallic composite cone bevelling. The cam effect ensures the valve seat can be released from the seal ring through the whole switching process with zero friction between valve seat and plate seal ring during the entire stroke process. This extends valve life, ensures no overtravel of the disc, allows for a lower torque and ensures bubble tight closure of the valve, resulting in zero-leakage performance.

The butterfly plate seal ring is designed as multi-layered seal ring. This seal compresses on a radial basis and move flexibly and elastically.

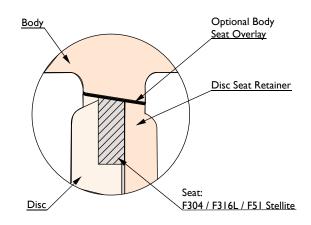

Graphite + metal combination as standard. Optionally, sealing materials such as PTFE + metal combinations can be supplied for different temperature and medium.

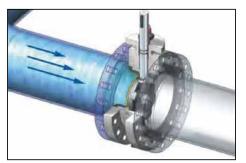
OPTIONAL SOLID METAL-TO-METAL SEAT


The APV-Superseal triple offset solid seat all metal to metal seat system are manufactured with three dimensional eccentric sealing structure. The valves are designed and manufactured with unique techniques and dedicated facilities for maximum machined accuracy. This ensures full cone match of sealing pair and eliminates the interference and abrasion between sealing faces.

A low degree of seating resistance, reliable sealing performance, reduced sealing face abrasion ensures a vastly extended valve life. The alloy hard sealing allows a higher pressure and temperature range whilst still providing bubbletight shut off. Semi-flexible solid design is also available.

Bi-directional Tight Sealing Design




Preferred Direction

API 607 7th Ed., ISO 10497-5

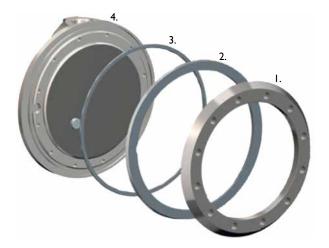
Firesafe Certified

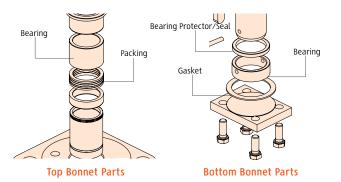
Non-Preferred Direction

MODEL SLHBFFS-T 150 TO 2500 CLASS TRIPLE OFFSET

MULTIPLE LAMINATED DISC SEATING

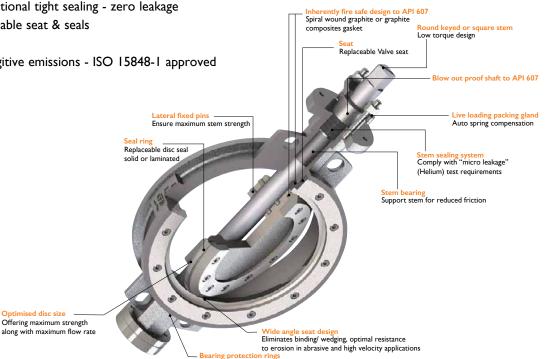
Key Components


- I. Disc retainer
- 2. Seal ring triple laminated
- 3. Spiral wound or graphite gasket
- 4. Disc


Due to the elasticity and the radial compression of the multiple laminated seal ring, the contact pressure is uniformly distributed around the seating surface guaranteeing zero leakage.

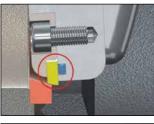
The use of graphite (or PTFE) laminated between multiple metal sealing rings ensures tightness between seal ring layers and an ideal level of flexibility allowing each metal layer to independently find the optimal seating position. One-piece metal Solid Seal Ring (SSR) is also available.

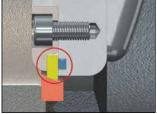
Slide Seal Design

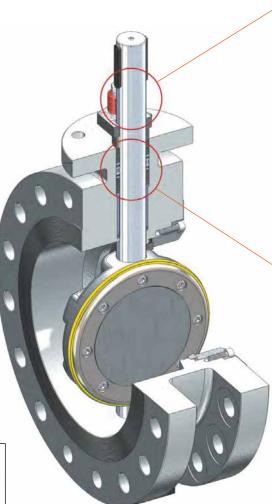

This dynamic seating arrangement features a double inclined cone design. The disc seal ring slides into the seating area to close the valve. This slide touch provides a better sealing than the typical conventional of contact touch. Also, the seal ring is solid metal enabling it to sweep away particles left on seat surface to double secure a tight sealing and ensure a long life cycle.

PRODUCT FEATURES

- Triple offset disc rotation to minimise the rubbing of the seat & seal contact surface and achieve high integrity sealing
- · Bi-directional tight sealing zero leakage
- Replaceable seat & seals
- Firesafe
- · Low fugitive emissions ISO 15848-1 approved

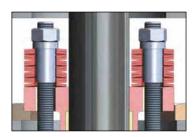


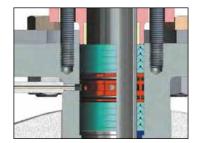

MODEL SLHBFFS-T 150 TO 2500 CLASS TRIPLE OFFSET


DESIGN OPTIONS - TRIPLE OFFSET

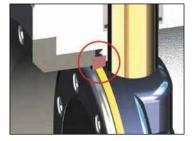
One Piece Metal Seat Design Option

The semi-flexible metal one piece seal ring design guarantees the tightest shut-off and ensures safety in case of thermal expansion.





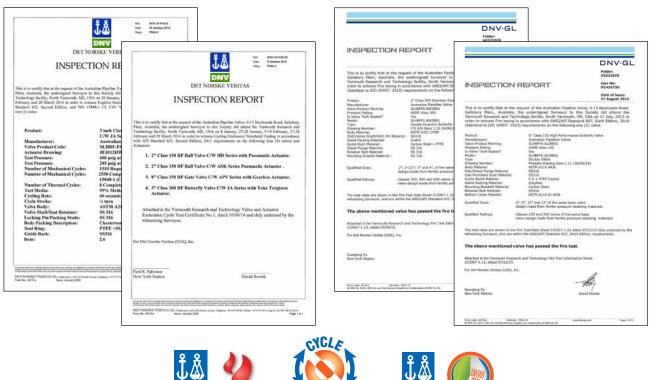
Stellite® Body Seat The body seat can optionally be supplied in Stellite® #21 (zero leakage).



 Live-loading Design Option
 A Belleville spring provides abrasion compensation by compressing the packing constantly which ensures a long life cycle. Design varies depending on size & class.

Low Emission Design

- Double packing design as standard guarantees safety.
- Leakage detection optional
- Emergency sealing injection optional.
- Additionl 'chemical seal' packing gland seal system optional.



Replaceable Body Seat Design Option The design includes a separate seat (not welded on the valve body) allowing ease of maintenance.

FIRESAFE, FUGITIVE EMISSION & CYCLE TEST CERTIFICATES

API 622 & ISO 15848-1 **Endurance Test Certified**

API 622 2011 2nd Edition **Fugitive Emission Certified**

FIGURE NUMBER SYSTEM SLHBF. SLHBFFS & SLHBFFS-T DOUBLE & TRIPLE OFFSET

TRIM MATERIALS

A = F304/CF8

B = F316/CF8M

C = F316L/CF3M

D = F304L/CF3

F = ALLOY-20

H = HASTELLOY

I = WCB+ENP

J = F51/S31803

Z = OTHER

G = MONFL

E = F321

SEATING

K = KELF

P = PTFE

R = RPTFE

PTFE

H = PPL UUHMW

C = CARBON FILLED

POLYETHYLENE

L = LAMINATED METAL

& GRAPHITE

M = METAL ISO 5208-D

N = METAL CLASS IV

O = METAL ISO 5208-A

R = METAL API 598

S = METAL CLASS VI

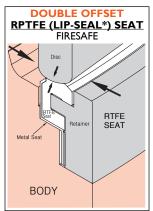
& PTFE

BLEED

Z = OTHER

U = PEEK

T = LAMINATED METAL


Y = DOUBLE BLOCK &

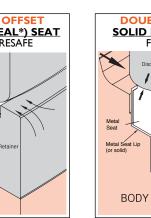
O = METAL CLASSV

MODEL	RATINGS	END CONNECTIONS	BODY MATERIALS
SLBHF	A = 150 CLASS	F = FLANGED-SHORT	A = WCB
Double offset -	B = 300 CLASS	G = FLANGED-LONG	B = WCI
Standard	C = 600 CLASS	L = LUG TYPE	C = WC6
SLHBFFS	D = 900 CLASS	W=WAFER TYPE	D = WC9
Double Offset -	E = 1500 CLASS		E = C-5
Firesafe	F = AS/BST-E		F = C-12
SLHBFFS-T	G = AS/BST-F		G = LCB
Triple Offset -	H = AS/BST-H		H = LC3
Firesafe	Z = SPECIAL		I = CF8
SLHBFFS-TD			J = CF8M
Double Block &			K = CF3
Bleed-Twin			L = CF3M
			M = CF8C

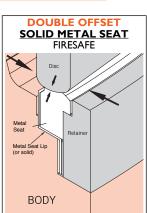
EXAMPLE - SLHBF-ALJBR1G-MS

Double offset Standard 150LB Lug type CF8M Stainless steel body F316 Trim **RPTFE** Seat insert 17-4 PH Stem **Graphite Packing Monitoring Port** Stellite Overlay Seat

- I. Double sealing construction - Primary RTFE seat
- Secondary metal firesafe lip seat
- 2. Excellent sealing (in Bi-directions on request)
- 3. Conforms to API 607 6th & 7th Edition


DOUBLE OFFSET PTFE (LIP-SEAL*) SEAT NON FIRESAFE Retain BODY

N = CN7M


P = WCC

Z = SPECIAL

- I. Reinforced PTFE
- 2. Excellent sealing (in both directions on request)
- 3. Cost effective

SEAT DESIGNS

- I. High temperature capability allows maximum of 620°C (1150°F)
- 2. High pressure capability
- 3. Stainless steel sealing area is resistant to corrosion and wear
- 4. Inherently firesafe in class V, VI or API 598 (metal seat) or ISO 5208-A/D shutoff

P = PTFE

Z = SPECIAL

SHAFT

| = |7-4PH

2 = 431SS

3 = 316SS

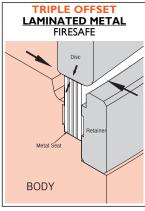
5 = XM19/

4 = \$31803/F51

NITRONIC 50

6 = MONEL K500

7 = ALLOY 20


8 = 416SS

9 = OTHER BLANK = SAME AS DISC

- SPECIAL
- B = BI-DIRECTIONAL TESTED
- C = ADDITIONAL ELASTOMER/ PTFE GLAND SEAL
- D = DOUBLE PACKING
- F = FLUSHING PORT
- L = LIVE LOADED PACKING GI AND
- M = MONITORING PORT
- N = NACE
- O = OXYGEN CLEANED
- P = PEEK/ COMPOSITE
- BEARING
- R = CHLORINE SERVICE
- S = STELLITE OVERLAY SEAT Z = OTHER

API 622 & ISO 15848-1 **Endurance Test Certified**

- I. Multi-sealing triple eccentric construction - Primary metal seat
 - Multiple metal laminations graphite or PTFE filled
- 2. Excellent sealing in **Bi-directions**
- 3. Inherently firesafe to API 607 7th Edition
- 4. Stellite overlay all metal disc seat optional

*Or Flo-Seal style seat, refer page 5. Actual drawing supplied on request. Indicative drawings only.

LINED BUTTERFLY VALVE 10/16 BAR MODEL 2014 / 2016

TYPE: 2014, 2016, 2014A 1000 KPA & 1600 KPA RATED SUIT AS/BS TABLE D, E, ASA 125, AS/BS/EN PN10 & PN16

MODEL 2014 / 2016 - (PINNED STEM) SEAL CONSTRUCTION & FEATURES

Shaft weather seal ISO 5211 Actuator flange accommodates all types of operators: handle, gear, electric and pneumatic actuators. Pressure surge seals* are moulded integrally inside the seat shaft hole area. These rings below disc are materially compatible with the seat to provide failsafe sealing around stem, eliminating possible leakage. The phenolic backed* seat is non-collapsible. stretch resistant and blowout proof. Easily field replaceable. Polished disc flats "mate" with seat flats to give a highly efficient seal: prevents leakage into the stem area Precision profile disc provides bubble-tight shut off with minimal disc/seat interference, assuring minimum torque and longer seat lift. Supported stem seal protects against distortion, a common cause of stem leakage. SUPERSEAL CONSTRUCTION The disc is precision manufactured to close tolerances on the O.D. The modern seat and disc The superseal seat design* has a design insures positive sealing much smaller mass of elastomer which can swell, in turn torque is controlled to a reasonable degree. while maintaining low seating torque. The superseal design and the flats. Seating edge is a polished half extends seat life by eliminating ball for torque control any bunching or tearing.

Strong precision key gives positive attachment for manual lever or actuator (Square or Double D).

Luberized bushings give stem support at actuator mounting and immediately outward of seat.

Precision taper pins ensure positive, vibration proof, stem to disc connection. Easily field replaceable. (Pinless design available)

Valves available with both wafer and lug type bodies. Fully lined body in a broad range of materials - including Teflon.

One piece thru-stem design ensures dependability and positive disc control.

Alignment features allow easy installation between pipeline flanges; a real installation cost saver. (model 2014A HP2 & 2016HP2)

Axial bearing prevents shaft overload.

The conventional disc

The conventional disc has been sanded to remove rough area, precise dimensions are not maintained. The conventional design relies on distortion and bunching of the seat to achieve a bubble tight shutoff. Seat life is decreased causing higher maintenance cost and increased down time. Elastomers are subject to swelling from fluid absorption which can increase the mass of the seat. This increase can and often does cause excessively high seating torque. Seat life is shortened.

- Precision machined disc edge & shaft flats.
- Bonded distortion proof seat, close tolerances.
- Positive shaft seals.
- · Low potential of seat swell.
- Controlled torque by design superiority.
- Non-precision disc dimensions.
- Seat distorts during installation and operation.
- Shorter seat life.
- Higher torque due to bunching and potential swelling.

*Design varies according to size, rating and material specifications.

This brochure is general in it's nature and design is subject to change at any time without notice.

SUPERSEAL - Butterfly Valves

TRADITIONAL

MODEL 2014 / 2016 - HU-1 (PINLESS) SEAL CONSTRUCTION & FEATURES

Shaft weather seal

ISO 5211 Actuator flange accommodates all types of operators: handle, gear, electric and pneumatic actuators.

Pressure surge seals* are moulded integrally inside the seat shaft hole area. These rings below disc are materially compatible with the seat to provide failsafe sealing around stem, eliminating possible leakage.

The phenolic backed* seat is non-collapsible, stretch resistant and blowout proof. Easily field replaceable.

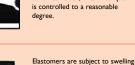
Polished disc flats "mate" with seat flats to give a highly efficient seal: prevents leakage into the stem area.

Precision profile disc provides bubble-tight shut off with minimal disc/seat interference, assuring minimum torque and longer seat lift.

Supported stem seal protects against distortion, a common cause of stem leakage.

SUPERSEAL CONSTRUCTION

TRADITIONAL CONSTRUCTION


The disc is precision manufactured to close tolerances on the O.D. and the flats. Seating edge is a polished half ball for torque control. The disc is pinless design.

The conventional disc has been sanded to remove rough area, precise dimensions are not maintained.

The modern seat and disc design insures positive sealing while maintaining low seating torque. The superseal design extends seat life by eliminating any bunching or tearing.

The conventional design relies on distortion and bunching of the seat to achieve a bubble tight shutoff. Seat life is decreased causing higher maintenance cost and increased down time.

from fluid absorption which can increase the mass of the seat. This increase can and often does cause excessively high seating torque. Seat life is shortened.

The superseal seat design* has a much smaller mass of elastomer

which can swell, in turn torque

Strong precision key gives positive attachment for manual lever or actuator (Square or Double D).

Luberized bushings give stem support at actuator mounting and immediately outward of seat.

Valves available with both wafer and lug type bodies. Fully lined body in a broad range of materials - including Teflon.

Pinless design disc.

Alignment features allow easy installation between pipeline flanges; a real installation cost saver. (Body style 2014A, 2016)

O-Ring prevents leakage from stem.

Pinless Disc

- Precision machined disc edge and shaft flats. Bonded distortion proof seat, close tolerances.
- Positive shaft seals. . Low potential of seat swell
- Controlled torque by design superiority.
- Non-precision disc dimensions.
- Seat distorts during installation and
- operation.
- Shorter seat life.
- Higher torque due to bunching and potential swelling.

*Design varies according to size, rating and material specifications.

MODEL 2014 / 2016

SPECIFICATIONS

Available To Suit Following Flanging

ANSI (ASA) ASME B16.5 / B16.47, 125LB / 150LB, AS 2129 Table D, E. AS 4087, PN14 & PN16. ISO 5752 / EN 1092.2 PN10, PN16, AS 4331.1 / ISO 7005-1 PN10, PN16, JIS etc. Face to face dimension available in accordance with BSEN 593 / BSEN 558 / API 609-A / ISO 5752 / AS 4795.

Fluid Application - Water, seawater, sewage, air, oil, powder, petroleum, gas, chemicals, salts, alkalines etc.

Design: - Available in API 609 category A, ASME B16.34, AS 4795:1, EN 593, EN 558-1, MSS SP67.

Operation - Generally flow control lever & notch plate to 300NB. Gear operator 250NB & over.

Mounting - To ISO 5211 on request. Long lasting, high performance design.

Version

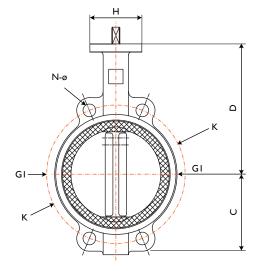
Δ G2

N-ø

G١

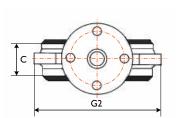
н

X

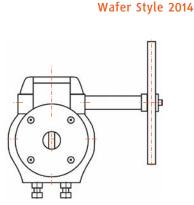

ТТ

Pressure Rating

Bi-directional bubble-tight shut off seat tested to 110% of full rating.

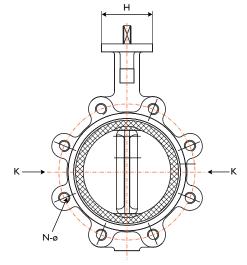

2 types available in this model:-Working pressure: 150 psig (1000kpa) & 232 psig (1600kpa). See HP Version brochure if higher pressure required.

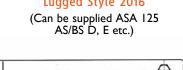
Over 600NB request pressure rating.

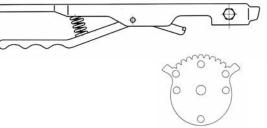


Wafer Style 2014A (Semi-lugged with 2 or 4 lugs). PCD of Lug holes (K) supplied according to

order i.e. ASA 125, AS/BS D, E etc.


Semi Lug


G

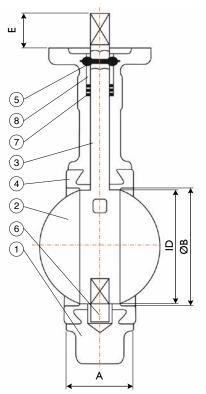

G2

Gear Operated

Lugged Style 2016

Lever & Notch Plate

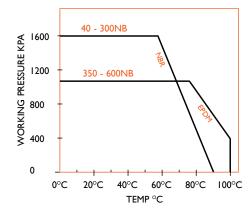
General Applications	Continuous Working Temperature Range	Disc Material	Seat Material
Steam, Water, Hot Gases, Powders, Slurries & Aqueous Slurries of an abrasive nature	Liquids - 10°C to 120°C Dry Services - 10°C to 100°C	Stainless Steel	General Purpose EPDM
Brines, Sea Water, Estuary Water, Marine Bilge & Ballast Systems	-10°C to 90/100°C	Aluminium Bronze or ENP or S/S or Nylon coated	Black Nitrile or EPDM
Oils, Fuels, Water, Air, Gases, Powders, Pellets, Slurries etc.	Hydrocarbons (Except Aromatics) - 10°C to 90°C Other Liquids - 10°C to 90°C Dry Services - 10°C to 60°C	Teflon or Nylon Coated or SG Iron or ENP or stainless	Black Nitrile
Water & other non erosive fluids	All -10°C to 90/100°C (Solid PTFE will do up to 160°C)	S.G Iron or powder coated	ANY


SUPERSEAL - Butterfly Valves

MODEL 2014 / 2016

MATERIALS

1. Body	Cast iron, stainless ductile iron, aluminium, carbon steel, stainless steel etc
2. Disc	316SS, 304SS, AL-Bronze, hard epoxy coated, hard rubber coated, nickel plated, PTFE coated, 410SS etc
3. Stem	316SS, 304SS, PTFE coated, AL-Bronze etc.
4. Seat	NBR (90°-100°C), EPDM (90°C) teflon, food grade rubber, Buna-N, Viton, Hypalon etc
5. Retaining Pin/ Gland Ring	30455/31655/41055
6. Bottom Bushing	Bronze/Nylon
7. O-Ríngs	NBR (nitrile)/EPDM
8. Upper Bush	Delrin/Nylon/Bronze


DIMENSIONS (MM)

Valve Size			Din	imension				Weight	Su Flan				
in	mm	Α	В	с	D	E	н	ID	Kg	G1*	G2*	K*	N-ø
1	25	31		57	85				1.1				
1-1/4	32	32		60	100				1.8				
1-1/2	40	33		58	124		90	40	2				
2	50	43	57	55	143	30	90	52	2.3				
2-1/2	65	46	70	64	155	30	90	65	2.7				
3	80	46	82	72	162	30	90	80	3.6				
4	100	52	104	90	181	30	90	100	5				
5	125	56	127	101	197	30	90	125	6.1				
6	150	56	150	114	210	30	90	148	7.1				
8	200	60	194	145	240	35	95	197	13.6				
10	250	68	247	178	286	35	110	247	21.3				
12	300	78	297	204	309	35	120	297	32.2				
14	350	76	330	266	355	55	125	327	85				
15	375	86	387	300	380	55	175	387					
16	400	86	387	300	380	55	175	387	106				
18	450	105	435	323	425	55	175	435	135				
20	500	130	489	350	430	90	210	477	170				
24	600	150	602	407	500	90	210	560	250				

650NB to 900NB refer to separate drawing

*GI, G2, K & N-Ø available to suit:- AS/BST-C, D, E, ASA 125, PN10, PN16, JIS etc. Sizes shown are subject to variation at any time

SEAT PRESSURE / TEMPERATURE

OPERATING TORQUE (NM)

2014/2014A/2016

VALVE	SIZE		Δ kPa (psi)						
in	mm	170 (25)	340 (50)	680 (100)	1020 (150)	1600 (232)			
2	50	12	12	20	25	35			
2-1/2	65	12	12	25	30	42			
3	80	18	19	30	35	60			
4	100	32	33	40	50	80			
5	125	49	51	60	70	90			
6	150	72	76	70	90	215			
8	205	127	139	160	190	400			
10	255	196	219	240	300				
12	305	289	323	400	500				
14	355	439	481	554	830				
16	405	568	636	762	1110				
18	455	751	831	1005	1390				
20	510	931	1052	1282	1730				
24	610	1375	1559	1871	2020				

• Torque shown is break/reseating (same)

INSTALLATION (DO NOT USE GASKETS)

Pipework opened to allow valve free entry, disc in semi-closed position

Disc should be turned to full open position after flange alignment and before doing up

Valve in semi-open to protect disc edge

and reduce rubber interference during installation and start up, this helps reduce

TORQUE

initial torque build up.

Torques based on clean, wet fluids. 20% safety factor recommended. For oil/lubricated fluids torque can reduce from 20% to 50%.

flange bolts.

For non lubricating dry gases torque can increase 35% to 80%. (see separate chart).

Dry or abrasive/dirty service, temperature variations as well as infrequent use can all dramatically increase torque.

This brochure is general in it's nature and details shown are subject to change at any time without notice.

LINED BUTTERFLY VALVE 16/21 BAR MODEL 2014-HP / 2016-HP

TYPE: 2014-HP, 2016-HP, 2014A-HP 2100 KPA RATED TO 300NB 1600 KPA RATED TO 350-500NB SUIT AS/BS TABLE F ANSI 150 AS/EN/BS PN16/20/21

Strong precision key gives positive attachment for

Luberized bushings give

actuator mounting and immediately outward

Precision taper pins

vibration proof, stem

Easily field replaceable.

Valves available with both wafer and lug type bodies. Fully lined

body in a broad range

of materials - including

One piece thru-stem design ensures dependability and positive disc control.

Alignment features

between pipeline

flanges; a real

allow easy installation

installation cost saver. (model 2014A HP2 & 2016HP2)

Axial bearing prevents

shaft overload.

Teflon

(Pinless design available)

to disc connection.

ensure positive,

manual lever or

stem support at

actuator.

of seat

MODEL 2014-HP / 2016-HP SEAL CONSTRUCTION & FEATURES

Shaft weather seal

Actuator flange accommodates all types of operators: handle, gear, electric and pneumatic actuators.

Pressure surge seals* are moulded integrally inside the seat shaft hole area. These rings below disc are materially compatible with the seat to provide failsafe sealing around stem, eliminating possible leakage.

The phenolic backed* seat is non-collapsible, stretch resistant and blowout proof. Easily field replaceable.

Polished disc flats "mate" with seat flats to give a highly efficient seal: prevents leakage into the stem area.

Precision profile disc provides bubble-tight shut off with minimal disc/seat interference, assuring minimum torque and longer seat lift.

Supported stem seal protects against distortion, a common cause of stem leakage.

SUPERSEAL

TRADITIONAL CONSTRUCTION The disc is precision manufactured to close tolerances on the O.D. and the flats. Seating edge is a polished half ball for torque control.

The conventional disc has been sanded to remove rough area, precise dimensions are not maintained. The modern seat and disc design insures positive sealing while maintaining low seating torque. The superseal design extends seat life by eliminating any bunching or tearing.

The conventional design relies on distortion and bunching of the seat to achieve a bubble tight shutoff. Seat life is decreased causing higher maintenance cost and increased down time.

reasonable degree. Elastomers are subject to swelling from fluid absorption

The superseal seat design*

has a much smaller mass of elastomer which can swell, in turn torque is controlled to a

swelling from fluid absorption which can increase the mass of the seat. This increase can and often does cause excessively high seating torque. Seat life is shortened.

- Precision machined disc edge & shaft flats.
 Bonded discortion proof seat close
 - Bonded distortion proof seat, close tolerances.
 - Positive shaft seals.
 - Low potential of seat swell.Controlled torque by design superiority.
 - Non-precision disc dimensions.
 - Seat distorts during installation and operation.
 - Shorter seat life.
 - Higher torque due to bunching and potential swelling.

*Design varies according to size, rating and material specifications.

MODEL 2014-HP - HU-1 / 2016-HP **SEAL CONSTRUCTION & FEATURES - PINLESS DESIGN**

Shaft weather seal

ISO 5211 Actuator flange accommodates all types of operators: handle, gear, electric and pneumatic actuators.

Pressure surge seals* are moulded integrally inside the seat shaft hole area. These rings below disc are materially compatible with the seat to provide failsafe sealing around stem, eliminating possible leakage.

The phenolic backed* seat is non-collapsible, stretch resistant and blowout proof. Easily field replaceable.

Polished disc flats 'mate' with seat flats to give a highly efficient seal: prevents leakage into the stem area.

Precision profile disc provides bubble-tight shut off with minimal disc/seat interference, assuring minimum torque and longer seat lift.

Supported stem seal protects against distortion, a common cause of stem leakage.

SUPERSEAL CONSTRUCTION

TRADITIONAL CONSTRUCTION

ball for torque control. The disc is pinless design

The conventional disc has been sanded to remove rough area, precise dimensions are not maintained.

The modern seat and disc design insures positive sealing while maintaining low seating torque. The superseal design extends seat life by eliminating any bunching or tearing.

much smaller mass of elastomer which can swell, in turn torque is controlled to a reasonable degree. The 21 bar rated valve has a bonded hard lined backing.

The superseal seat design* has a

Elastomers are subject to swelling from fluid absorption which can increase the mass of the seat. This increase can and often does cause excessively high seating torque. Seat life is shortened.

Strong precision key gives positive attachment for manual lever or actuator (Square or Double D).

Luberized bushings give stem support at actuator mounting and immediately outward of seat.

Valves available with both wafer and lug type bodies. Fully lined body in a broad range of materials - including Teflon.

Pinless design disc.

Alignment features allow easy installation between pipeline flanges; a real installation cost saver. (Body style 2014A, 2016)

O-Ring prevents leakage from stem.

The disc is precision manufactured to close tolerances on the O.D. and the flats. Seating edge is a polished half

The conventional design relies on distortion and bunching of the seat to achieve a bubble tight shutoff. Seat life is decreased causing higher maintenance cost and increased down time.

Pinless Disc

- Precision machined disc edge and shaft flats.
- Bonded distortion proof seat, close tolerances.
- Positive shaft seals. Low potential of seat swell.
- Controlled torque by design superiority.
- Non-precision disc dimensions.
- Seat distorts during installation and operation.
- Shorter seat life.
- Higher torque due to bunching and potential swelling.

*Design varies according to size, rating and material specifications.

MODEL 2014-HP / 2016-HP

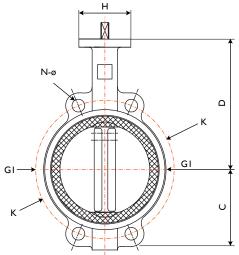
SPECIFICATIONS

Available To Suit Following Flanging

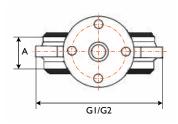
ANSI (ASA) ASME B16.5 / B16.47 150LB, AS 2129 Table E & F, AS 4087, PN14, PN16 & PN21. EN 1092-2 PN10, PN16, PN25, JIS, DIN etc. Face to face dimension available in accordance with BSEN 593 / BSEN 558 / API 609-A / ISO 5752 / AS 4795.

Design - Available in API 609-A, AS 4795.1, AS 4795, BS, EN 12266-1, BSEN 593.

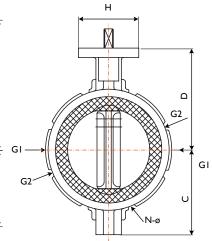
Fluid Application - Water, seawater, sewage, air, oil, powder, petroleum, gas, chemicals, salts, alkalines etc.

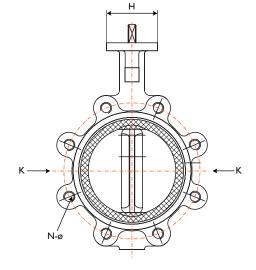

Operation - Generally flow control lever & notch plate to 300NB, gear op over 300NB

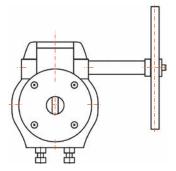
Mounting - To ISO 5211 on request. Long lasting, high performance design.

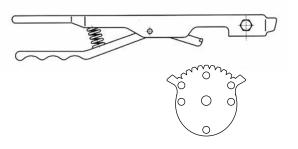

Pressure Rating (to 300NB)

2100 KPA Working pressure:-Bi-directional bubble-tight shut off and seat tested to 110% of full rating. Test Pressure: 314 psi.


Over 300NB rating is 1600 KPA to 400NB


Wafer Style 2014A HP Semi-lugged with 2 or 4 lugs). PCD of Lug holes supplied according to order i.e. ASA 150, AS/BS E, F etc


Semi Lug


Wafer Style 2014 HP

Lugged Style 2016 HP (Can be supplied ANSI 150 AS/BS E, F etc.)

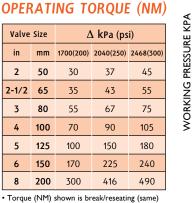
Lever & Notch Plate

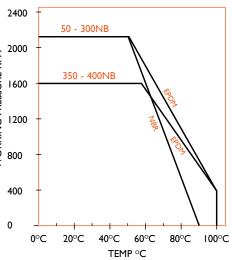
General Applications	Continuous Working Temperature Range	Disc Material	Seat Material
Steam, Water, Hot Gases, Powders, Slurries & Aqueous Slurries of an abrasive nature	Liquids - 10°C to 120°C Dry Services - 10°C to 100°C	Stainless Steel	General Purpose EPDM
Brines, Sea Water, Estuary Water, Marine Bilge & Ballast Systems	-10°C to 90/100°C	Aluminium Bronze or ENP or S/S or Nylon coated	Black Nitrile or EPDM
Oils, Fuels, Water, Air, Gases, Powders, Pellets, Slurries etc.	Hydrocarbons (Except Aromatics) - 10°C to 90°C Other Liquids - 10°C to 90°C Dry Services - 10°C to 60°C	Teflon or Nylon Coated or SG Iron or ENP or stainless	Black Nitrile
Water & other non erosive fluids	All -10°C to 90/100°C (Solid PTFE will do up to 160°C)	S.G Iron or powder coated	ANY

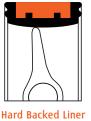
MODEL 2014-HP / 2016-HP

MATERIALS

1. Body	Cast iron, stainless ductile iron (ASTM A396), aluminium, carbon steel etc
2. Disc	316SS, 304SS, AL-Bronze, hard epoxy coated, hard rubber coated, nickel plated, PTFE coated, 410SS etc
3. Stem	316SS, 304SS, 410SS, PTFE coated etc
4. Seat	NBR (90°C), EPDM (90°-100°C), solid teflon (170°C), phenolic backed teflon (160°C), EPDM back teflon (150°C), food grade rubber, Buna-N, Viton, Hypalon etc
5. Retaining Pin/Gland Ring	30455/41055/31655
6. Bottom Bushing	Bronze/Nylon
7. O-Rings	NBR (nitrile)/EPDM
8. Upper Bush	Delrin/Nylon/Bronze
9. Backing	Phenolic (where applicable)


DIMENSIONS (MM)


Valve	e Size			[Dimensio	n			Weight Kg		Suit Fla	nging	
in	mm	Α	В	С	D	E	Н	ID	weight kg	G1*	G2*	K*	N-ø
1	25	31		57	85				1.1				
1-1/4	32	32		60	100				1.8				
1-1/2	40	33		58	124		90	40	2				
2	50	43	57	55	143	30	90	52	2.3				
2-1/2	65	46	70	64	155	30	90	65	2.7				
3	80	46	82	72	162	30	90	80	3.6				
4	100	52	104	90	181	30	90	100	5				
5	125	56	127	101	197	30	90	125	6.1				
6	150	56	150	114	210	30	90	148	7.1				
8	200	60	194	145	240	35	95	194	13.6				
10	250	68	247	178	286	35	110	247	21.3				
12	300	78	298	204	309	35	120	297	32.2				
14	350	76	330	266	355	55	125	327	85				
15	375	86	387	300	380	55	175	385					
16	400	86	390	300	380	55	175	387	106				


*GI, G2 & K & N-Ø available to fit any flanging i.e. AS/BS E, F, ASA 125, PN16, JIS etc.

Sizes shown are subject to variation at any time.

SEAT PRESSURE / TEMPERATURE

Hard backed bonded liner design.

The composite seat design provides the advantages of a flexible liner for tight shut off with a hard bonded backing for rigidity to prevent distortion at higher pressure ensures compression between the precision profile disc and seat. The rolling action of the disc coupled with the stability of the seat eliminates any tearing or bunching thus minimising seat damage.

By bonding the elastomer liner face material to a hard backing ring core, the design ensures complete support and increased stability to the seat to withstand higher pressures. This guarantees positive control against distortion, particularly in the stem seal area, eliminating all risks of leakage.

The seat design only has a small volume of elastomer swelling hence the torque is reduced and longer life is assured.

TORQUE

Torques based on clean, wet fluids. 20% safety factor recommended. For oil/lubricated fluids torque can reduce from 20% to 50%. For non lubricating dry gases torque will increase 35% to 80%.

Also, dry or abrasive/dirty service, temperature variations as well as infrequent use can all dramatically increase torque.

This brochure is general in it's nature and details shown are subject to change at any time without notice.

PTFE / FEP / PFA / ETFE & ELASTOMER LINED BUTTERFLY VALVE 2 PIECE BODY MODEL 2014-2P

Retaining System

The shaft is retained in the body with retaining ring, a thrust washer and two C-Rings, providing a 'blow-out proof' shaft assembly. The retaining ring may be easily removed with a standard hand tool on field disassembly.

Shaft

One-piece through shaft ensures dependability and positive disc positioning.

Bushings

Shaft bushings reduce torque and isolate the shaft from the valve body, preventing seizure of the shaft due to corrosion in the shaft journal.

PTFE Seat

Solid PTFE or EPDM with phenolic-backed seat provides resilient support for the molded PTFE, thus maximising the shut-off and cycle life of the seat.

Disc and Shaft Connection

The square connection eliminates shaft retention components being exposed to the line media. Maximum flow is achieved. Mounting Flange ISO 5211 mounting flange accomodates direct mounting of all types of actuators, including: handles, gear operators, electric and pneumatic.

O-Ring Shaft seal provides further assurance against stem leakage.

Flats Seal

Smooth finished disc flats mate with seat flats to give a highly efficient primary seal that prevents leakage into the shaft area.

Two Piece Body Two piece body allows for

ease of assembly and maintenance.

Disc

Stainless steel or stainless steel PFA (min. thickness 0.1mm) coated disc prevents chemical corrosion from flow media. Precision profile provides bubble-tight shut-off, assures minimum torque and longer seat life.

Service

Hygienic, Chemical, Industrial, Mining, Oil & Gas, High Temperature

Design

Centric, Wafer & Lugged API 609, BS/EN 593, BS/EN 558

Size Range 50 to 600mm

Pressure Rating

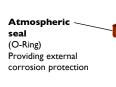
PN 3.5, PN10, PN16 500 kPa max rating on dead end service 1600 kPa rating available up to 600NB

Temperature Rating

Minus 20°C to 110°C EPDM liner & seals Minus 8°C to 90°C Buna N liner & seals Minus 5°C to 110°C Teflon liner, NBR backed Minus 20°C to 130°C Teflon liner, EPDM backed Minus 10°C to 100°C Urethane liner Minus 20°C to 150°C solid Teflon liner & seals

Standard Materials

 Body:
 Cast Iron, 316SS etc


 Disc:
 316 S/S EPDM encapsulated, Teflon (PFA) encapsulated

 Stem:
 316 S/S, EPDM or Teflon (PFA) encapsulated

 Seat:
 EPDM or Buna N Teflon - Buna N backed Teflon - EPDM backed Urethane Teflon - solid

Flanging

AS 2129 Table D, E AS 4087 PN14, PN16, ANSI Class 125/150 EN 1092-2, PN10, PN16

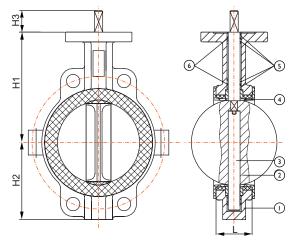
Triple stem bearing Maintenance free, with SS + PTFE / Polyacetal bearings

> Seperateable Disc and Stem

One Piece

One Piece Fully Coated Disc and Stem

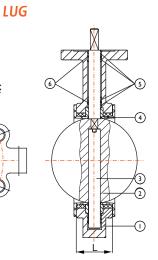
SUPERSEAL - Butterfly Valves


MODEL 2014-2P

MATERIALS

Component	Material Options Available
Body (1)	Cast Iron FS220 Ductile Iron GGG40 Carbon Steel ASTM A216 WCB Stainless Steel ASTM A351 CF8 Stainless Steel ASTM A351 CF8M
Disc (2) & Stem (3)	Carbon Steel ASTM A105/WCB + Nylon Coating or PTFE Coated Stainless Steel ASM A351 CF8/CF8M/316L/CF3M Aluminium Bronze Nickel Titanium Hastalloy
Liner (4)	PTFE (Solid) FEP (Solid) PFA (Solid) ETFE (Solid) Buna N (Nitrile) EPDM Silicon Viton PTFE (EPDM Backed) White food grade Buna N White food grade EPDM

WAFER



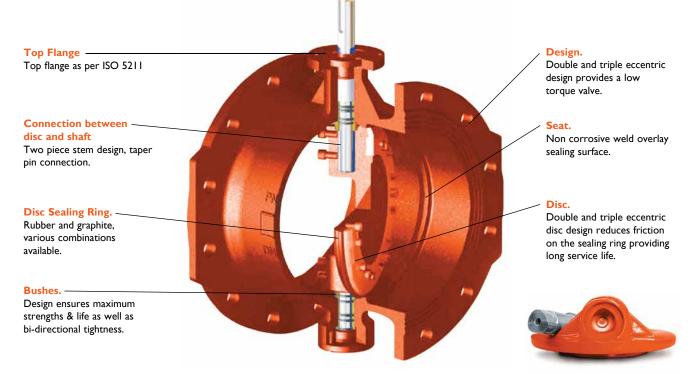
DIMENSIONS (MM)

SI	ZE						ISC	0 5211		E	1098	PN16			
DN	NPS	L	H1	H2	H3	No.	ØN	0c1	n1-0d1	0C	n-0d	n-M	ØZ	ØF	н
40	1.5"	33	128	73	29	F05	65	50	4-08	110	4-018	4-M16	12.6	12.1	9
50	2"	43	135	73	29	F05	65	50	4-08	125	4-018	4-M16	12.6	12.1	9
65	2-1/2"	46	135	80	29	F05	65	50	4-08	145	4-018	4-M16	12.6	12.1	9
80	3"	46	138	90	29	F05	65	50	4-08	160	8-018	8-M16	12.6	12.1	9
100	4"	52	158	116	29	F07	90	70	4-010	180	8-018	8-M16	15.77	14.1	11
125	5"	56	175	130	29	F07	90	70	4-010	210	8-018	8-M16	18.92	18.1	14
150	6"	56	188	148	29	F07	90	70	4-010	240	8-022	8-M20	18.92	18.1	14
200	8"	60	230	180	35	F10	125	102	4-012	295	12-022	12-M20	22.1	22.1	17
250	10"	68	270	220	35	F10	125	102	4-012	355	12-026	12-M24	28.45	28.1	22
300	12"	78	300	255	35	F10	125	102	4-012	410	12-026	12-M24	31.6	28.1	22

350NB to 400NB refer to drawing.

4

43 -2


(

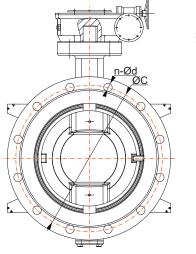
Parts	Description
1	Body
2	Disc
3	Stem
4	Seat
5	Bushing
6	O Ring

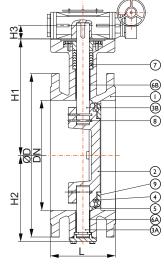
OF H 12.1 9

LARGE DIAMETER FLANGED BUTTERFLY VALVE RESILIENT SEAT DOUBLE / TRIPLE OFFSET MODEL HU-B60~63W PN10~25

Eccentric Offset Disc

MATERIALS

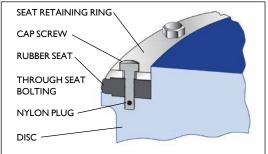

	1 1.1.1.1		Spec	ification		P 1
Name	Material	ASTM	DIN	EN	JIS	Remark
Body	Cast Iron Ductile Iron Carbon Steel Stainless Steel	ASTM A126B ASTM A536 A216 WCB A351 CF8M A351 CF8	GG25 GGG40 GS-C25 1.4408 1.4301	EN-GJS-250 EN-GJS-400 GP 240 GH+N BS 970 304 S15 BS 970 316 S15	FC200 FCD450 SCPH 2 SCS14 SCS13	
Disc	Plated Ductile Iron Aluminium Bronze Stainless Steel Carbon Steel	ASTM A536 B148-954 A351 CF8M A351 CF8 A216 WCB	GGG40 C954 1.4408 1.4301 GS-C25	EN-GJS-400 EN 1982 CC491K BS 970 304 S15 BS 970 316 S15 GP 240 GH+N	FCD450 ABLC2 SCS14 SCS13 SCPH 2	PTFE or Nylon Coated Disc also available
	Carbon Steel	A216 WCB	GS-C25	GP 240 GH+N	SCPH 2	
Stem	Stainless Steel	A276-410 A276-304 A276-316 A276-316L	1.4201 1.4301 1.4408 1.4401	BS 970 410-S21 BS 970 304 S15 BS 970 316 S15 BS 970 316L	SUS410 SCS13 SCS14 SCS14A	
Seat	NBR (Nitrile) EPDM Heat Resistant EPDM Neoprene (CR) Hypalon (CSM) Viton (FKM) Natural Rubber (NR) PTFE Cover NBR Full PTFE Silicon (Q)					-20°C~80°C -25°C~110°C -25°C~130°C -30°C~120°C -20°C~200°C -30°C~70°C -20°C~150°C -20°C~180°C -60°C~250°C
Pin	Stainless Steel	A182 F6A A182 F304 A182 F316	1.4201 1.4301 1.4408	BS 970 410-S21 BS 970 304 S15 BS 970 316 S15	SUS410 SCS13 SCS14	
Buching	PTFE					
Bushing	Bronze	B62			BC62	
0-Ring	NBR EPDM Viton					-20°C~80°C -25°C~110°C -20°C~100°C



MODEL HU-B62

Size	DN100-DN2000
General	EN 593, EN 1092
Mounting Pad	ISO 5211
Face to Face	EN 558-1 14 Series, ISO 5752, DIN 3202-F4
Flange Drilling	EN 1092-2PN10/PN16/PN25

Check with APV for available seat ratings on larger sizes. Flange driling according to ASME B16.1, ASME B16.5, ASA 150, BS 4504 PN10/PN16, BS10 Table D/E, EN 1092 PN2.5~PN25, AS 2129 Table D/E, AS 4087 PN14, PN16, PN21, JIS10K, ISO 7005.



MATERIALS

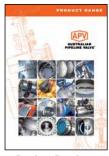
Parts	Description	Material	Specification		
1	Body	Ductile Iron	GGG40		
2	Disc	Ductile Iron	GGG40		
3	Stem	Stainless Steel	SS420		
4	Disc Sealing	EPDM			
5	Body Sealing	Stainless Steel	AISI304		
6	Bushing	PTFE+Non-ferrous metal			
7	Packing	EPDM			
8	Pin	Stainless Steel	SS420		
9	Retaining Ring	Stainless Steel	AISI304		

Typical example only, refer as built drawing.

On Disc - Seat Retention System

DIMENSIONS (MM)

Size						EN 1092-2 PN10		EN 1092-2 PN16			EN 1092-2 PN25			
DN	NPS	L	H1	H2	H3	ØD	0C	n-0d	ØD	0C	n-0d	ØD	0C	n-0d
100	4"	190	140	115	38	220	180	8-19	220	180	8-19	235	190	8-23
125	5"	200	150	130	38	250	210	8-19	250	210	8-19	270	220	8-28
150	6"	210	160	150	38	285	240	8-23	285	240	8-23	300	250	8-28
200	8"	230	200	187	42	340	295	8-23	340	295	12-23	360	310	12-28
250	10"	250	235	215	42	395	350	12-23	405	355	12-28	425	370	12-31
300	12"	270	264	237	42	445	400	12-23	460	410	12-28	485	430	16-31
350	14"	290	300	270	51	505	460	16-23	520	470	16-28	555	490	16-34
400	16"	310	335	305	51	565	515	16-28	580	525	16-31	620	550	16-37
450	18"	330	360	335	51	615	565	20-28	640	585	20-31	670	600	20-37
500	20"	350	395	370	136	670	620	20-28	715	650	20-34	730	660	20-37
600	24"	390	460	425	136	780	725	20-31	840	770	20-37	845	770	20-41
700	28"	430	535	505	149	895	840	24-31	910	840	24-37	960	875	24-44
800	32"	470	590	560	149	1015	950	24-34	1020	950	24-41	1085	990	24-50
900	36"	510	660	630	185	1115	1050	28-34	1125	1050	28-41	1185	1090	28-50
1000	40"	550	735	705	216	1230	1160	28-37	1255	1170	28-44	1320	1210	28-57
1200	48"	630	840	815	216	1455	1380	32-41	1485	1390	32-50	1530	1420	32-57
1400	56"	710	1010	985	267	1675	1590	36-44	1685	1590	36-50	/	/	/
1600	64"	790	1130	1120	312	1915	1820	40-50	1930	1820	40-57	/	/	/
1800	72"	870	1280	1270	312	2115	2020	44-50	/	/	/	/	/	/
2000	80"	950	1405	1380	326	2325	2230	48-50	/	/	1	1	/	/


Flange drilling according to ASME B16.1, ASME B16.5, ASA 150, DIN2501 PN6/PN10/PN16, BS 4504 PN10/PN16, BS10 Table D/E, EN 1092, AS2129 Table D/E, JIS10K, ISO 7005 etc.

COMPLETE PRODUCT LINE

"Australian Pipeline Valve produces isolation, control and flow reversal protection products for severe and critical service media in utility, steam, pipelines, oil & gas and process industries. **APV** valves and pipeline products form the most competitive portfolio in the market."

AUSTRALIAN PIPELINE VALVE BRAND RANGE - CATALOGUES

Product Brochure

Gate, Globe & Check Valves - Cast Steel

& Trunnion Mounted

Gate, Globe & Check Valves - Forged Steel

Floating Small Bore

Plug Valves Lubricated, Sleeved & Lined

Ball Valves Special Service

Oilfield Products Valves & Wellheads

TORQTURN

TWIN-LOK[®]

UNIFLO[®]

IIAMOND GEAR®

Diamond Gear Gearboxes

Flowturn Strainers & Sight Glasses

Steamco

Steam Valves

Torqturn Actuators

Flowturn Gate, Globe & Check Valves

Supercheck Wafer Check Valves

TwinLok Tube Fittings

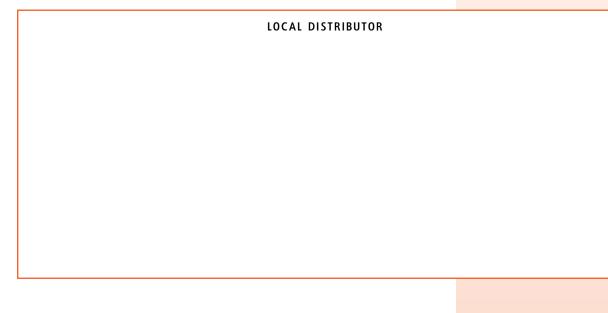
Flowturn

Instrument Valves

Superseal . Butterfly Valves

Uniflo Check Valves

Contact us for your local stockist/distributor



ADELAIDE • BRISBANE • PERTH

www.australianpipelinevalve.com.au

API 622 2011 2nd Edition Fugitive Emission Certified

API 622 2011 2nd Edition Endurance Test Certified

QUALITY ASSURANCE AND CERTIFICATION

We are continually improving all facets of quality assurance. Full metallurgical and test certificates are always supplied for all pressure retaining parts, we also provide it on all major trim components.

We have endeavoured to provide a broad outline of our range and capabilities. Because we are continually developing new products for our customers this catalogue will, to some extent be incomplete. This catalogue is a general overview only, individual drawings and data sheets can be furnished on request.

If you have any requirement in the field of valves, please contact us for a prompt response. Continuous development of Australian Pipeline Valve products may necessitate changes in the design or manufacturing processes. Australian Pipeline Valve reserves the right to effect any such changes without prior notice.

